## MATHEMATICS

Result Oriented

(NEET & JEE MAINS)

## Types of Polynomials

# Based on highest degree

\* Linear Polynomial : Any polynomial which is in the form of ax + b, where  $a \neq 0$  and a, b being real numbers is called a linear polynomial.

**Example**: 2x+3, 5x + 4, -5x - 3

#### Note:

- \* 'ax + b' is also called the standard form or general form of a linear polynomial.
- \* Every linear polynomial has two terms.
- \* The first term 'ax' is called the x-term.
- \* The second term b is called the x<sup>0</sup> term (or) constant term (or) independent term.
- \* The highest degree of every linear polynomial is '1' (one).
- \* Every linear polynomial has only one solution called factor (itself).
- \* Quadratic Polynomial: Any polynomial which is in the form of  $ax^2 + bx + c$  where  $a \ne 0$  and a, b, c being real numbers is called a quadratic polynomial.

**Example**:  $x^2 + 3x + 2$ ,  $2x^2 - 5x - 7$ ,  $x^2 - 5x + 6$  etc.

#### Note:

- \*  $\overline{ax^2 + bx + c}$  is called the standard form (general form) of a quadratic polynomial.
- \* Every quadratic polynomial has three terms in it.
- \* The first term ax<sup>2</sup> is called 'x<sup>2</sup> term.
- \* The second term bx is called 'x' term.
- \* The third term c is called  $x^0$  term or constant term or independent term.
- Every quadratic polynomial has exactly two solutions called factors
- \* If the two zeros of a quadratic polynomial f(x) are denoted by  $\alpha$ ,  $\beta$ , then the formula to find it is given by
  - $f(x) = k [x^2 (sum of the zeros) x + (product of the zeros)]; i.e.$
  - $f(x) = k[x^2 (\alpha + \beta) x + \alpha\beta]$ ; where the relationship between the zeros and the co-efficients is given by

$$\alpha + \beta = -\frac{\text{co-efficien of x}}{\text{co-efficient of x}^2} = -\frac{b}{a}$$
 and  $\alpha\beta = \frac{\text{constant term}}{\text{co-efficient of x}^2} = +\frac{c}{a}$ 

## MATHEMATICS

Result Oriented

(NEET & JEE MAINS)

\* <u>Cubic polynomial</u>: Any polynomial which is in the form of  $ax^3 + bx^2 + cx + d$ , where  $a \ne 0$  and a, b, c, d being real numbers is called a cubic polynomial.

Ex: 
$$x^3 - 3x^2 - 3x + 1$$
,  $x^3 + 5x^2 - 2x + 10$ 

#### Note:

- \*  $\overline{ax^3}$  +  $bx^2$  + cx + d is also called the standard form of a cubic polynomial.
- \* Every cubic polynomial consists of 4 terms.
- \* The first term ax<sup>3</sup> is called x<sup>3</sup> term.
- \* The second term  $bx^2$  is called  $x^2$  term.
- \* The third term cx is called x term.
- \* The fourth term d is called  $x^{o}$  term or constant term or independent term.
- \* Every cubic polynomial has exactly 3 solutions called factors.
- \* If the three zeros of a cubic polynomial f(x) are denoted by  $\alpha$ ,  $\beta$ ,  $\gamma$ , then the formula to find it is given by
  - $f(x) = k [x^3 (sum of the zeros)x^2 + (sum of product of zeros taken two at a time)x (product of the zeros)]; i.e.$
  - $f(x) = k [x^3 (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha) x \alpha\beta\gamma];$  where the relationship between the zeros and the co-efficients is given by:

$$\alpha + \beta + \gamma = -\frac{\text{co-efficient of } x^2}{\text{co-efficient of } x^3} = -\frac{b}{a} \text{ and } \alpha\beta\gamma = -\frac{\text{constant term}}{\text{co-efficient of } x^3} = -\frac{d}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = -\frac{\text{co-efficient of x}}{\text{co-efficien of x}^3} = \frac{c}{a}$$

\* Biquadratic Polynomial: Any polynomial which is in the form of  $ax^4 + hx^3 + cx^2 + dx + e$  where a, b, c, d, e, being Real numbers,  $a \neq 0$  is called a biquadratic polynomial.

**Example**:  $6x^4 + 3x^3 - 2x^2 + 6x + 1$ 

#### Note:

- The standard form of a biquadratic polynomial is  $ax^4 + hx^3 + cx^2 + dx + e$ .
- Every biquadratic polynomial has 5 terms.
- The first term ax<sup>4</sup> is called 'x<sup>4</sup>' term.
- The second term bx<sup>3</sup> is called 'x<sup>3</sup>' term.
- The third term cx<sup>2</sup> is called 'x<sup>2</sup>' term.
- The fourth term dx is called 'x' term.

## MATHEMATICS

Result Oriented

(NEET & JEE MAINS)

- The fifth term e is called 'x<sup>0</sup>' term or constant or independent term.
- Every biquadratic polynomial has exactly 4 solutions called factors.

# **Types of Polynomials**

#### Based on number of terms

- Monomial: Any polynomial which has 1 term is called a monomial. Ex: x<sup>2</sup>, 2xy, -x, xyz......etc.
- **Bionomial:** Any polynomial which has 2 terms is called a Bionomial Ex: x + 2,  $3x^2 + 5$ ,  $4x^2 + 5$ ,  $4x^3 + 2x^2$  .....etc.
- <u>Trinomial</u>: Any polynomial which has 3 terms is called a trinomial Ex:  $x^2 + 3x + 2$ , x + y + z, ..... etc.
- Zero of a polynomial: If f(x) be any given polynomial and 'a' being a real number and if f(a)=0 then a is called the zero of the polynomial f(x).
- <u>Factorisation</u>: A procedure (method) in which a given polynomial is expressed as the product of its maximum number of factors is known as factorisation.
- Solve: Finding all the possible values of the unknown quantity or quantities, which exists in the problem is called solving.
- Remainder Theorem: If f(x) be any given polynomial of degree greater than or equal to 1 and small 'a' be any real number, such that f(x) is divided by (x a), then the remainder is equal to f(x).

$$f(x) = (x - a) q(x) + r(x)$$

#### Note:

- \* f(x) is called the dividend
- \* (x a) is called the divisor
- \* q(x) is called the quotient
- \* r(x) is called the remainder.
- \* If a polynomial p(x) is divided by (x + a) the remainder is the value of p(x) at x = -a i.e., p(-a).

$$[x + a = 0 => x = -a].$$

\* If a polynomial p(x) is divided by ax - b the remainder is the value of p(x) at x = -a i.e., p(-a).

## MATHEMATICS

**Result Oriented** 

(NEET & JEE MAINS)

$$[x + a = 0 => x = -a]$$

- \* If a polynomial p(x) is divided by ax + b the remainder is the value of p(x) at x = -b/a i.e., p(-b/a).
- \* If a polynomial p(x) is divided by (b ax) the remainder is the value of p(x) at x = b/a i.e., p(-b/a).

$$[b - ax = 0 => -ax = -b => x = -b/-a => x = b/a]$$

- \* Remainder theorem is used to find the remainder.
- \* Remainder theorem is also called the division rule i.e. Dividend = Division x Quotient + Remainder.
- \* Factor Theorem: If f(x) be any given polynomial of degree greater than or equal to 1 and small 'a' be any real number, such that f(a) = 0, then (x a) is a factor of f(x).

#### Note:

- \* (x + a) is a factor of a polynomial f(x) if f(-a) = 0
- \* (ax b) is a factor of a polynomial f(x) if f(b/a) = 0
- \* (ax + b) is a factor of a polynomial f(x) if f(-b/a) = 0.
- \* (x a) is a factor of a polynomial f(x) if f(a) = 0
- \* Factor theorem is used to factorize a polynomial by division method or Horner method.

https://loyaleducation.org